본문 바로가기

松泉, 인생글, 바라보기

바라보기, 언어, telomere, 텔로미어, 末端小粒, 말단소립

반응형

바라보기, 언어, telomere, 텔로미어, 末端小粒, 말단소립 

 

텔로미어(telomere) 또는 말단소립 (末端小粒)은 염색체의 끝부분에 있는 염색 소립으로 세포의 수명을 결정짓는 역할을 한다.[1] 이것은 즉 세포시계의 역할을 담당하는 DNA의 조각들이다. 텔로미어는 그리스어의 '끝'(τἐλος, telos)과 '부위'(μέρος, meros)의 합성어다. 세포분열이 일어나는 동안에 염색체와 DNA를 복제하는 효소는 염색체의 끝부분으로 복제를 계속할 수 없다. 텔로미어가 없는 상태로 세포가 분열된다면 세포에 관한 정보가 들어있는 염색체의 끝부분이 소실될 것이다. 텔로미어는 염색체의 끝부분을 막고있는 분해되지 않는 완충지역이라 할 수 있다. 하지만 세포가 분열되면서 텔로미어는 소실되며 텔로머레이스라는 역전사효소에 의해 보충된다. .

텔로미어의 연구과정, 세포의 노화에 대해서 구체적으로 연구한 Leonard Hayflick 박사는 1961년, 생물과 장기에 따라서 세포의 분열 횟수가 정해져 있고, 그 후에 세포가 노화해 죽는다는 사실을 밝혀냈다.[10] Hayflick 박사는 태아의 세포는 100번 정도 분열하고, 노인의 세포는 20~30번 정도 분열한 후에 노화가 된다는 사실을 발견했다.[11] 이를 헤이플릭 리미트(Hayflick Limit)라고 불린다. Hayflick 박사의 연구에 의하면 고양이는 8번, 말은 20번, 인간은 60번 정도 세포분열을 할 수 있다고 한다. 그 후에 발견된 것이 바로 텔로미어이다. 1990년대 초가 되어서야 생물세포학자들에 의해서 텔로미어가 염색체의 말단에 위치함이 밝혀졌다. 연구가 계속 진행된 결과, 샌프란시스코 캘리포니아 대학(UCSF)의 Elizabeth blackburn(61)교수를 비롯하여 존스홉킨스 의대 Carol Greider(48)과 하버드 의대 Jack Szostak(57)은 텔로미어를 통해서 세포의 노화 메커니즘을 규명하였다.[12] 이들은 2009년 노벨 생리학·의학상 수상자로 선정되었다.-위키백과

 

텔로미어란, 진핵생물의 염색체 말단에 존재하는 염기서열이다. 노화를 일으키는 핵심 요소중 하나로 지목되어 연구가 활발하게 진행되고 있다.

유전적 암호를 지니고 있지 않기에 어떠한 단백질로 번역되지 않지만, 노화와 에 관련된 부위이다. 우리말로는 말단소립, 말단체, 말단염색체, 말단소체 등으로 번역한다.

텔로머레이스, 말단소립도 한계가 있어서 일정만큼 복제하고 나면 말단소립이 완전히 사라지는데 이 복제 한계 횟수를 헤이플릭 한계Hayflick Limit라고 하며, 인간의 경우 약 60번이 헤이플릭 한계라고 한다.[3] 60번이나 복제한 세포는 더 이상 복제를 할 수 없어져 사멸이 되어 생명체의 노화와 죽음을 가져온다. 대부분의 세포는 말단소립을 신장시키는 효소를 지니고 있지 않지만, 일부는 특수한 효소를 통해 말단소립을 신장시킬 수가 있는데 이 효소가 바로 텔로머레이스Telomerase다.-나무위키

반응형