Newton's law of universal gravitation says that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.[1][2][3]
This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning.[4] It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica ("the Principia"), first published on 5 July 1687.-위키백과
The equation for universal gravitation thus takes the form:
where F is the gravitational force acting between two objects, m1 and m2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.
The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798.[5] It took place 111 years after the publication of Newton's Principia and approximately 71 years after his death.
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a different constant.
Newton's law has later been superseded by Albert Einstein's theory of general relativity, but the universality of the gravitational constant is intact and the law still continues to be used as an excellent approximation of the effects of gravity in most applications. Relativity is required only when there is a need for extreme accuracy, or when dealing with very strong gravitational fields, such as those found near extremely massive and dense objects, or at small distances (such as Mercury's orbit around the Sun).
万有引力定律
牛頓的万有引力定律(英語:Newton's law of universal gravitation),
通称万有引力定律,定律指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。
万有引力定律是由艾萨克·牛顿稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。
此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。
牛頓的引力定律類似於庫侖定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是平方反比定律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。
牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。
(344) Feather & Hammer Drop on Moon - YouTube
만유인력의 법칙(萬有引力-法則, 영어: law of universal gravity)이란 질량을 가진 물체사이의 중력끌림을 기술하는 물리학 법칙이다. 이 법칙은 아이작 뉴턴의 1687년 발표 논문 〈자연철학의 수학적 원리, 혹은 프린키피아(Principia)〉를 통해 처음 소개되었다. 현대의 용어를 사용하여 이 법칙을 기술하자면 다음과 같다.
모든 점질량은 두 점을 가로지르는 선을 따라 다른 모든 점질량을 힘으로 끌어 당긴다. 이 힘은 두 상호작용하는 점질량 사이의 질량의 곱에 비례하며, 두 점질량 사이의 거리는 제곱에 반비례한다. 이를 수식으로 나타내면 다음과 같다.-위키백
- F : 두 점질량 간의 중력의 크기
- G : 중력 상수,
- m1 : 첫 번째 점질량의 질량
- m2 : 두 번째 점질량의 질량
- r : 두 점질량의 거리
뉴턴은 이 법칙을 그의 운동의 제2법칙에 넣어 행성의 가속도를 구할 수 있었고, 이를 통해 행성의 궤도가 타원형임을 증명할 수 있었다. 더욱이 뉴턴은 중력이 행성의 진로 뿐만 아니라, 달의 세차 운동, 혜성의 운동, 은하수의 생성 및 빛의 굴절 등에도 적용되는 매우 일반적인 힘의 하나임을 인식하였다. 이것이 바로 뉴턴이 중력을 만유인력(universal force)라 부르게 된 이유이다.
'松泉, 인생글, 바라보기' 카테고리의 다른 글
바라보기, 찾기, Green Knight, 가웨인 경과 녹기사 (0) | 2024.04.02 |
---|---|
바라보기, 좋은글, 德不孤 必有隣, 덕불고 필유린 (0) | 2024.04.02 |
바라보기, 찾기, 다빈치 노트, 미스터리 실험쇼 시청, TVN (2) | 2024.04.01 |
바라보기, 찾기, PPSS, 프프스스, ㅍㅍㅅㅅ (0) | 2024.04.01 |
바라보기, 찾기, 마유목, 삶, 상생, 사랑 그리고 공존 (0) | 2024.04.01 |